Ciência

Tesoura molecular viral é próximo alvo de drogas para combate da Covid-19

Coronavírus usa cortador enzimático para produção de vírus e para desativar proteínas imunes essenciais, dizem cientistas americanos e poloneses

Cientistas americanos e poloneses descobrem como bloquear "tesoura viral" no novo coronavírus (Getty Images/Getty Images)

Cientistas americanos e poloneses descobrem como bloquear "tesoura viral" no novo coronavírus (Getty Images/Getty Images)

FS

Fabiane Stefano

Publicado em 17 de outubro de 2020 às 15h15.

Cientistas americanos e poloneses acreditam que o design de drogas pode servir ao combate da Covid-19, ao bloquear a ação de uma espéce de "tesoura" molecular que o vírus usa para a produção de vírus e para desativar proteínas humanas cruciais para o sistema imunológico resposta. Essas conclusões foram publicadas na sexta-feira, 16, na revista Science Advances.

Os pesquisadores são do Centro de Ciências da Saúde da Universidade do Texas em San Antonio (UT Health San Antonio) e da Universidade de Ciência e Tecnologia de Wroclaw. Informações colhidas pela equipe americana ajudaram os químicos poloneses a desenvolver duas moléculas que inibem o cortador, uma enzima chamada SARS-CoV-2-PLpro.

SARS-CoV-2-PLpro promove a infecção por detecção e processamento de proteínas virais e humanas, disse um dos autores do estudo, o pesquisador sênior Shaun K. Olsen, PhD, professor associado de bioquímica e biologia estrutural na Joe R. e Teresa Lozano Long School of Medicine em UT Saúde San Antonio.

"Essa enzima executa um golpe duplo", disse Olsen. "Ele estimula a liberação de proteínas que são essenciais para o vírus se replicar e também inibe moléculas chamadas citocinas e quimiocinas que sinalizam ao sistema imunológico para atacar a infecção", disse Olsen.

O SARS-CoV-2-PLpro corta as proteínas humanas ubiquitina e ISG15, que ajudam a manter a integridade da proteína. "A enzima atua como uma tesoura molecular", disse Olsen. "Ele separa a ubiquitina e o ISG15 de outras proteínas, o que reverte seus efeitos normais."

A equipe de Olsen resolveu as estruturas tridimensionais do SARS-CoV-2-PLpro e as duas moléculas inibidoras, chamadas de VIR250 e VIR251.

"Nosso colaborador, o químico Marcin Drag, e sua equipe desenvolveram os inibidores, que são muito eficientes no bloqueio da atividade do SARS-CoV-2-PLpro, mas não reconhecem outras enzimas semelhantes em células humanas", disse Olsen. "Este é um ponto crítico: o inibidor é específico para esta enzima viral e não apresenta reação cruzada com enzimas humanas com função semelhante."

A equipe americana também comparou o SARS-CoV-2-PLpro com enzimas semelhantes de coronavírus das últimas décadas, o SARS-CoV-1 e o MERS. Eles aprenderam que o SARS-CoV-2-PLpro processa a ubiquitina e o ISG15 de maneira muito diferente do que sua contraparte do SARS-1.

“Uma das questões-chave é se isso explica algumas das diferenças que vemos em como esses vírus afetam os humanos, se é que afetam”, disse Olsen.

Ao compreender as semelhanças e diferenças dessas enzimas em vários coronavírus, pode ser possível desenvolver inibidores que sejam eficazes contra vários vírus, e esses inibidores podem ser modificados quando outras variantes do coronavírus surgirem no futuro, disse ele.

Acompanhe tudo sobre:CoronavírusProteínasRemédios

Mais de Ciência

Niède Guidon, arqueóloga referência mundial em estudos sobre as Américas, morre aos 92 anos

Rio Grande do Sul abrigou um dos dinossauros mais antigos do mundo, diz pesquisa

Cientistas dão cocaína a moscas e descobrem pistas que podem ajudar humanos a se livrarem de vícios

Coca-Cola e batata frita curam dor de cabeça? Mistério do 'McEnxaqueca' intriga internet